Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners.
نویسندگان
چکیده
DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.
منابع مشابه
Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function.
Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental obser...
متن کاملThe ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.
The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signalin...
متن کاملGibberellin Signaling in Plants – The Extended Version
The plant hormone gibberellin (GA) controls major aspects of plant growth such as germination, elongation growth, flower development, and flowering time. In recent years, a number of studies have revealed less apparent roles for GA in a surprisingly broad set of developmental as well as cell biological processes. The identification of GA receptor proteins on the one end of the signaling cascade...
متن کاملEthylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis.
Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 a...
متن کاملDELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana
The hormones gibberellins (GAs) control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 166 2 شماره
صفحات -
تاریخ انتشار 2014